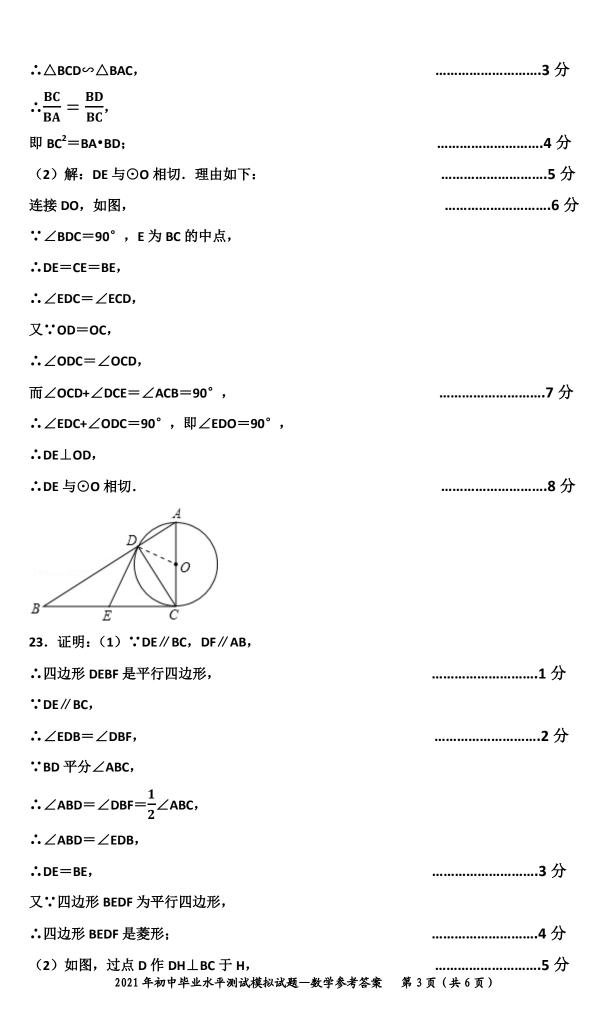
2021 年初中毕业水平测试数学模拟试题

参考答案

一、选择题(本大题共 10 小题,每小题 3 分,共 30 分。)					
1-10. CABDA DABCD					
二、填空题(本大题共7小题,每小题4分,共28分。)					
11. ab (a - 1)	12. 8.2×10 ⁸	13.	1	14. n≤1且n≠0	
15. 3	16. $\frac{32\pi}{3}$	17.	12		
三、解答题(一)(本大题共3小题,每小题6分,共18分。)					
18. 解:原式= $\left[\frac{x^2}{x+1}\right]$	$(x-1)\Big]\div\frac{(x+1)}{(x-1)}$	$\frac{(x-1)}{+1)^2}$	•••••	2 分	
$=\frac{x^2-(x+x)^2}{x^2-(x+x)^2}$	$\frac{(x+1)^2}{(x+1)(x-1)} \cdot \frac{(x+1)^2}{(x+1)(x-1)}$.)		3 分	
$=\frac{1}{x+1}\cdot\frac{x+1}{x-1}$	<u>1</u> 1				
$=\frac{1}{x-1}$			•••••	4分	
: 分式的分母 $x+1\neq 0$, $x^2-1\neq 0$, $x^2+2x+1\neq 0$,					
解得: x≠±1,					
∴取 x=0,					
当 $x=0$ 时,原式= $\frac{1}{0-1}$	_ = - 1.			6分	
19 . 证明: 在△ABE ₹	和△ACD 中,				
$\begin{cases} \angle B = \angle C \\ AB = AC \\ \angle A = \angle A \end{cases}$					
∴ △ABE≌ △ACD (AS	SA),			4 分	
∴AE=AD,			•••••	5 分	
Ζ∵аС=ав,					
∴cE=BD.				6 分	
20. 解: (1) 不可能:	:			1 分	
(2) 画树状图如图:					

开始				
₩ A B C D				
乙 ABCDABCDABCD ABCD4分				
共有 16 种等可能的结果,甲、乙两兄弟选在同一个街道摆地摊的结果有 4 个,				
5 分				
∴ 甲、乙两兄弟选在同一个街道摆地摊的概率为 $\frac{4}{16} = \frac{1}{4}$ 6 分				
四、解答题(二)(本大题共 3 小题,每小题 8 分,共 24 分。)				
21 . (1) 解: 假设需要增加医务人员 x 人,根据题意得出:				
原来每天每人平均接种 1000÷10=100(人),				
∵每增加 1 名医务人员,每人每天就能多为 5 人接种疫苗,				
∴现在平均接种: (100+5x)人,				
∴医院一天为 1680 人接种疫苗,所得方程为:				
$(10+x)(100+5x) = 1680,$ 4 \mathcal{H}				
整理得出: $x^2+30x-136=0$,				
解得: $x_1=4$, $x_2=-34$ (不合题意舍去);				
∴需要安排医务人员 14 人;				
答: 若医院一天为 1680 人接种疫苗,则需要安排医务人员 14 人;5 分				
(2) 当医院一天安排 18 名医务人员接种疫苗时,				
根据(1)分析可知: $(10+x)(100+5x) = (10+8) \times (100+5\times8) = 2520$ 人,				
6 分				
: 医院每天最多能为 2000 人接种疫苗,				
∴此时医务人员太多,这样将影响工作效率,				
∴医院一天安排 18 名医务人员接种疫苗不合理8 分				
22. (1) 证明: ∵AC 为⊙O 的直径,				
∴∠ADC=90°,1分				
∴∠BDC=90°,				
又 ∵ ∠ACB=90°,				
∴∠ACB=∠BDC,				
又∵∠B=∠B, 2021 年初中毕业水平测试模拟试题—数学参考答案 第2页(共6页)				

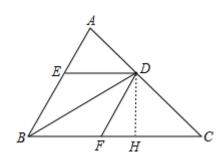


- ∵DF//AB,
- \therefore \angle ABC= \angle DFC=60 $^{\circ}$,
- ∵DH⊥BC,
- ∴∠FDH=30°,

∴FH=
$$\frac{1}{2}$$
DF, DH= $\sqrt{3}$ FH= $\frac{\sqrt{3}}{2}$ DF,6 分

- **∵**∠C=45°, DH⊥BC,
- ∴∠C=∠HDC=45°,

- \therefore DF=2 $\sqrt{6}$,
- ∴菱形 BEDF 的边长为 2√6.



五、解答题(三)(本大题共2小题,每小题10分,共20分。)

∴设N
$$(4, \frac{n}{4})$$
, 则NB= $\frac{n}{4}$,5分

∴ AN=AB - NB=1 -
$$\frac{n}{4}$$
;6 分

(3)由(2)易得 AM=4 - n,

整理得 (4 - n) ²=2,

$$\therefore$$
n=4 $\pm\sqrt{2}$9 分

∵点 N 为线段 AB 上的一动点

$$\therefore$$
n=4- $\sqrt{2}$ 10 分

25. 解:(1)∵抛物线 y=ax²+bx+3 过点 B(- 3, 0), C(1,	, 0)
$ \begin{array}{ll} \cdot & 9a - 3b + 3 = 0 \\ a + b + 3 = 0 \end{array} $ 解得: $ \begin{cases} a = -1 \\ b = -2 \end{cases} $	2 分
:. 抛物线解析式为 $y = -x^2 - 2x + 3$	3 分
(2) 过点 P 作 $PH \perp x$ 轴于点 H ,交 AB 于点 F	4 分
∴ $x=0$ 財, $y=-x^2-2x+3=3$	
$\therefore A (0, 3)$	
∴直线 AB 解析式为 y=x+3	5 分
∵点 P 在线段 AB 上方抛物线上	
∴ $ ∀ P(t, -t^2 - 2t + 3) (-3 < t < 0) $	
$\therefore F(t, t+3)$	
$\therefore PF = -t^2 - 2t + 3 - (t + 3) = -t^2 - 3t$	
$: S_{\triangle PAB} = S_{\triangle PAF} + S_{\triangle PBF} = \frac{1}{2} PF \cdot OH + \frac{1}{2} PF \cdot BH = \frac{1}{2} PF \cdot OB = \frac{3}{2} $	$-t^2-3t$) = $-\frac{3}{2}(t+\frac{3}{2})^2+\frac{27}{8}$
\therefore 点 P 运动到坐标为($-\frac{3}{2},\frac{15}{4}$), $\triangle PAB$ 面积最大	7 分
(3) 存在点 P 使△PDE 为等腰直角三角形	
设 $P(t, -t^2 - 2t + 3) (-3 < t < 0)$,则 $D(t, t + 3)$	
$\therefore PD = -t^2 - 2t + 3 - (t + 3) = -t^2 - 3t$	
∵抛物线 $y = -x^2 - 2x + 3 = -(x+1)^2 + 4$	
∴对称轴为直线 x= -1	
∵PE//x 轴交抛物线于点 E	
$∴y_E = y_P$,即点 $E \lor P$ 关于对称轴对称	
$\therefore \frac{x_E + x_P}{2} = -1$	
$\therefore x_E = -2 - x_P = -2 - t$	
$\therefore PE = x_E - x_P = -2 - 2t $	
∵△PDE 为等腰直角三角形,∠DPE=90°	
∴PD=PE	8 分
①当 - 3 <t≤ -="" 1="" 2="" 2t<="" td="" 时,pe="-"><td></td></t≤>	
$\therefore -t^2 - 3t = -2 - 2t$	
解得: t1=1 (舍去), t2=-2	

2021 年初中毕业水平测试模拟试题—数学参考答案 第 5 页 (共 6 页)

∴P (-2, 3)9 分

②当-1<t<0时, PE=2+2t

$$\therefore -t^2 - 3t = 2 + 2t$$

解得:
$$t_1 = \frac{-5 + \sqrt{17}}{2}$$
, $t_2 = \frac{-5 - \sqrt{17}}{2}$ (舍去)

:.
$$P(\frac{-5+\sqrt{17}}{2}, \frac{-5+3\sqrt{17}}{2})$$

综上所述,点 P 坐标为(- 2, 3)或($\frac{-5+\sqrt{17}}{2}$, $\frac{-5+3\sqrt{17}}{2}$)时使 $\triangle PDE$ 为等腰直角三角形.10 分

